An analytical approach to the equivariant index and Witten genus on spin manifolds
نویسندگان
چکیده
This work is divided in two cases. In the first case, we consider a spin manifold M as set of fixed points an S1-action on X, and second case loop space M. For each build vector bundle, connection bundle endomorphisms. These objects are used to global operators which define analytical index case. equal topological equivariant Atiyah–Singer index, expression where Witten genus appears.
منابع مشابه
6 Witten Deformation and the Equivariant Index
Let M be a compact Riemannian manifold endowed with an isometric action of a compact Lie group. The method of the Witten deformation is used to compute the virtual representation-valued equivariant index of a transversally elliptic, first order differential operator on M. The multiplicities of irreducible representations in the index are expressed in terms of local quantities associated to the ...
متن کاملAn equivariant index formula for elliptic actions on contact manifolds
Given an elliptic action of a compact Lie group G on a co-oriented contact manifold (M, E) one obtains two naturally associated objects: A G-transversally elliptic operator Db / , and an equivariant differential form with generalised coefficients J (E, X) defined in terms of a choice of contact form on M . We explain how the form J (E, X) is natural with respect to the contact structure, and gi...
متن کامل2 00 7 Witten Deformation and the Equivariant Index
Let M be a compact Riemannian manifold endowed with an isometric action of a compact, connected Lie group. The method of the Witten deformation is used to compute the virtual representation-valued equivariant index of a transversally elliptic, first order differential operator on M. The multiplicities of irreducible representations in the index are expressed in terms of local quantities associa...
متن کاملthe aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame
رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...
An introduction to the Seiberg-Witten equations on symplectic manifolds∗
The Seiberg-Witten equations are defined on any smooth 4-manifold. By appropriately counting the solutions to the equations, one obtains smooth 4-manifold invariants. On a symplectic 4-manifold, these invariants have a symplectic interpretation, as a count of pseudoholomorphic curves. This allows us to transfer information between the smooth and symplectic categories in four dimensions. In the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2021
ISSN: ['1879-1662', '0393-0440']
DOI: https://doi.org/10.1016/j.geomphys.2021.104170